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Abstract

The effect of adding the uncatalysed reaction step to the cubic autocatalator in a closed system is examined under the
pooled chemical approximation. The addition of this extra step has a dramatic effect on the overall reaction over the
parameter range where, without this step, the pooled chemical approximation breaks down. It is found that, no matter
how slow the uncatalysed reaction, the pooled chemical approximation now remains valid throughout. There is a
parameter range where there is oscillatory behaviour, these oscillations arising from points of Hopf bifurcation.

1. Introduction

In this paper we consider the prototype chemical reaction scheme based on the cubic
autocatalator, with the reactant A produced by a simple first order decay from a precursor P.
The reaction scheme is

P- A rate kop (1)

A + 2B - 3B rate kab2 (2)
B C rate k2 b (3)

(where p, a and b are the concentrations of P, A and B respectively and k, k and k2 are the
rate constants). It has been shown, Gray and Scott [1,2,3], Scott [4] and D'Anna et al. [5], that
the reaction scheme given by (2) and (3) can, in an open system (the continuous stirred tank
reactor (c.s.t.r.)), display many complex patterns of behaviour. Here we suppose that the
reaction is taking place within a closed system, with the continuous supply of fresh reactant A
in the c.s.t.r. being replaced by the production of A from P via step (1). Consequent on this is
the assumption that the initial concentration of P is many orders of magnitude greater than the
concentrations of the intermediates A and B. This problem has been discussed by the authors,
Merkin et al. [6], allowing for the very slow reduction in the concentration of P.

However, in such a situation (where one of the reactants is initially present in large excess) it
is common to invoke the "pooled chemical approximation" which, in the present context,
means assuming that the concentration of P remains constant throughout. The consequences of
doing this for reaction scheme (1-3) have been discussed in Merkin et al. [7], where it was
shown that taking the concentration of P as a constant is a good approximation initially, with p
taking its local slowly decaying value. However, as time elapses this quasi-steady state becomes
unstable, oscillations then develop which grow in amplitude and period until after a further
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time the concentration of A grows unbounded (and that of B decreases to zero). The pooled
chemical approximation has then broken down.

Merkin et al. [6] showed that the addition of the slow uncatalysed step

A B rate k3 a (4)

had a dramatic effect on the overall reaction. This extra step enables B to be formed (even
though this rate of production may be very slow) and this acts as a trigger for the much faster
autocatalytic step (2). The effect of allowing an uncatalysed reaction to take place in parallel
with the autocatalytic process has been investigated in considerable detail in the c.s.t.r. context,
B.F. Gray et al. [8], B.F. Gray and Scott [9].

The purpose of this paper is to consider the reaction scheme (1)-(4) under the pooled
chemical approximation, i.e. assuming that the concentration of P remains constant. We show
that, with the inclusion of the uncatalysed step (4), the concentrations of A and B remain
bounded throughout. Thus this slight modification to the original reaction scheme enables the
pooled chemical approximation to remain valid over the whole parameter range. There is still a
parameter range over which oscillations occur, with these oscillations arising from limit cycles
created at two points of Hopf bifurcation. We see that at both these points the bifurcation
produces a stable limit cycle, enabling us to conclude that there is just one stable limit cycle
possible, existing over the parameter range for which the stationary state is unstable.

2. Equations

From Merkin et al. [6], the equations describing the reaction scheme (1-4), assuming the the
concentration of P remains constant at its initial value p0, are

dx 2 X dy 2 X_ x dff_tx =+ (5)
dt1 1 xy2 p dt xy2-+ 

in x > 0, y > 0. Here x = (kl/k 2)l/
2 a, y = (kl/k 2)1 /2b are the non-dimensional concentra-

tions of A and B respectively, t = k2t (where t is time), A = (kl/k 2 )l/ 2 kopo/k 2 and p = k 2/k 3.
The pooled chemical approximation means that 11 is to be taken as a constant, of 0(1), and the
inclusion of the slow uncatalysed step (4) implies that the constant p is to be assumed large.

Equations effectively the same as (5) have been used by Tyson and Kauffman [10] and
Ashkenazi and Othmer [11] in the context of cell division or mitosis, in which the reaction is
assumed to take place in two compartments coupled by diffusion through a semi-permeable
membrane. From Ashkenazi and Othmer [11] we have, in the notation of the present paper,
that equations (5) have just one finite equilibrium point (x,, y,) where

xs = 1 (6)
tL+ -

P

The locus of (x,, y,) as ji is varied is thus xs = y/(ys2 + l/p) which is shown in Fig. 1, where
we see that the effect of including the uncatalysed step is for both x, and y, - 0 as 11 - 0
(whereas without step (4) xs - oo as 1 -* 0).

For p > 8 there are Hopf bifurcations at (x, ys) when / = 11 and 1 = a2, with 0 < 11A < 12
< 1 and where

2 1) 2( 2 + 2 = (7_f _ P2 p P
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Ys

X, -

Fig. 1. A graph of the stationary state (x,, y,) as given parametrically by (6), the arrow indicates the direction of 
increasing.

so that for p >> 1

3
- -1-- '.... (8)

The degenerate Hopf bifurcation at p = 8 has been studied by Golubitsky and Langford [12]
in the context of singularity theory. The unfolding of the singularity at p = 8 showed that, close
to p = 8 at least, there was just one limit cycle which existed in Al < t < J2 and was stable. In
the application we have in mind p >> 1, and we can show that this situation of just one stable
limit cycle existing for /t < /J < J/2 persists for all p > 8, no matter how large the value of p
(provided only that if remains finite). This is, perhaps, a little unexpected as in the c.s.t.r.
context the type of bifurcation can change as the typical time for the decay of B varies, [3], with
both stable and unstable limit cycles being possible.

Finally, we note that without the uncatalysed step, i.e. with p formally allowed to be infinite,
there is just one point of Hopf bifurcation, at /i = 1, producing a stable limit cycle in /t < 1,
which is destroyed at infinite amplitude by a heteroclinic orbit at /L = l,c (tc - 0.90032) with

A < , x - t, y - 0 as t - oo from all initial conditions. We now consider the solution near
the bifurcation points at /I = /ll and IL = 2-

3. Behaviour near the bifurcation points

To study the behaviour of the solutions of equation (5) near the points of Hopf bifurcation
IL = al and ta = /A2 we use the method of multiple scales, Jordan and Smith [13]. The details are
similar to those described in Merkin et al. [14] and need not be repeated in full here. We find it
more convenient to use = x + y and y as dependent variables, and put

(9)
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(where the + sign is taken with il and the - sign with 2). An expansion of 6 and y in the
form

= ~ 
+

l1 + 22 
-

+ E33 ' ' ' , Y =Y, + Eyl + 2y 2 + E3y3 + · · · (10)

where Cs = x5 + y, leads to secular terms at 0(E3 ) which we remove by introducing the the slow
time variable T = E

2t. Then

Y =A(T) cOS(Wit + P(T)), = - sin(Woit + (T))
c0i

(11)

where

8 
F1

(12)

(13)

To remove the secular terms at 0(E3 ) the amplitude A(T) must satisfy

dA = t1 8 )1/2 _ A2 

dT 02 P , D2

for/tt Close to/It, and

dA = 2 (1 8 )1/2 A(1 A2

for /i close to 2. In these equations

(14)

1 3w2 +
81 (1- 8)1/2

and

1 3w2

D2 8112(1 - 8)

(11 + 5(1 _ 8 ) 1/2

4wl(7 + ( 8 /2)

(11 - 5(1 - 8 ) 2

4 (7 -(1 8)1/2)

Clearly D 2 > 0 for all p > 8 and also it is relatively straightforward to show, using (7) and (12),
that D22 > 0 for all p > 8.

From equations (13) and (14) it follows that A - Di as T -C o from any (positive) initial
conditions, so that defining the amplitudes Ax and Ay of the oscillations in x and y
respectively by Ax = Xm, - xmn, and Ay = Ymx - ymi, we have

(i = 1, 2)= 2D (1 + 2)1/2 1 -_ 11 /2 .. , Ay = 2D i 1 - i l/2 + ..
oi

(17)

for I -i << 1. For p >> 1 we have from (12) that

j i - p
- 1 / 2

+ .· · ·, 2 = 1 - p-
1

+- . (18)

(15)

(16)
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On using these in the expressions for D1 and D2 we have, for p >> 1, that near p = u

Ax - 2/p/4(l-112)l/ 2 + * Ay 4p-1/4( _p1Al,1/
2

+ , (19)

and near = 112

A -8( 2- / ) 1/ 2 + '", Ay 4(y 2- / ) 1/2 + **. (20)

So from (18) and (20) we can see that both the amplitude and period of the oscillations close
to 1A = P2 remains bounded and in fact approaches the expressions given by Merkin et al. [7]
(where the uncatalysed step was not included) as p - oo. From (18) and (19) we see that near

= 1 the period of the oscillations and Ax grow large for large p while Ay becomes small.
Also, we note that both Di and D2 remain positive for all p > 8 and so the bifurcations at

both = Cal and 1= A2 do not change in character, producing a stable limit cycle in i > al and
It < 2 respectively. This last point has been checked numerically using the bifurcation program
given by Hassard et al. [15]. The next step is to show that (x,, y) is surrounded by at least one
stable limit cycle for each A in l1 < < 2.

4. The phase portrait

Here we extend the results of the previous section by showing that for each t in 1,l < < 12
(with p > 8) there is at least one limit cycle surrounding (x,, y) in the quadrant x, y > 0.

First we note that, since dx/dt = > 0 on x = 0 and dy/dt = x/p > 0 on y = 0 (with
x > 0), all paths must enter the quadrant x, y > 0 with increasing t. So all trajectories with
initial conditions x0 , y > 0 remain in x, y > 0 for all t. We now show that such trajectories
must also remain bounded in t > 0 (i.e. they cannot be attracted to infinity in this quadrant).
This is done by examining the phase portrait of equations (5) as x, y - oo.

To discuss the behaviour at infinity we use the Poincar6 projection, Jordan and Smith [13],
introducing new variables

Y 1y1= = -- (21)
x x

Transformation (21) maps the quadrant x, y > 0 bijectively onto the quadrant u > 0, < 0 in
the (u, v) plane and is constructed so that the lines y/x = constant as x - oo are mapped into
the lines u = constant as u - 0-. So the behaviour near the 'arc at infinity' x2 +y2 - oo is
mapped into the neighbourhood of the line v = 0- in the (u, v) plane. We can discuss the
behaviour of paths at infinity in the (x, y) plane by examining the corresponding paths in the
finite (u, v) plane (the point at infinity on the y-axis is also mapped to infinity in the (u, v)
plane and this point has to be considered separately).

In terms of u and v, equations (5) can be combined to give the first-order equation

do v((3 + U2 + 2 /p) (22)

du u(u- v2 + 3 + u 2 ) + (1 + U) 2 /

Equilibrium points in the first quadrant of the (x, y) plane as x2 +y 2 -* must have v = 0,
and from (22)

u2(1 + ) = 0, u > 0. (23)

The only solution of (23) is u = 0 which corresponds to an equilibrium point in the (x, y) plane
at the positive 'end' of the x-axis (so the inclusion of the extra step (4) does not introduce any
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extra equilibrium points at infinity). Also, v = 0, u > 0 is a phase path of (22) which
corresponds through (21) to a bounding path at infinity in x, y > 0 joining the equilibrium
point at the positive end of the x-axis to that at the positive end of the y-axis.

Next consider the nature of the phase paths determined by (22) in the neighbourhood of the
equilibrium point u = v = 0. The horizontal isocline is given by the curve

U=i·~ (_/./2- - v 0, u >0, (24)

which is defined only for v S - 1/(/,p) and is a monotone decreasing function of v. So in some
sufficiently close neighbourhood of u = v = 0, dv/du $ 0. The vertical isocline is given im-
plicitly by

u (u - )v+v u + 0. (25)

It is clear from (25) that u = u(v) has two branches in u > 0, v 0. To obtain a uniform
approximation to the solution of (25) for p > 1 we begin on the lower branch where u is of
O(p - 1) and v is of 0(1), and look for a solution in the form

U(v; p)= p-
1

ul(v) + p-2 2 () + ' ' ' . (26)

Substituting (26) into (25), expanding and solving upto O(p-2) gives

1 - - /2(1 - ltV) 3 O(p 3 ).

Expansion (27) becomes non-uniform as v - 0-, in particular when v is of O(p-1/2) (which
gives u of O(p- 1)). To continue the solution we introduce the scaled variable V given by
v = p- 1/2V where V is now of 0(1). In terms of u and V, equation (25) becomes

u ( U ( -- + 3/2 1 + ) +-2 =0. (28)
P P p3/2 p2

We look for a solution of (28) in the form

u(V; p) = p-lul(V) + - - . (29)

At leading order we obtain

u = (V 2 + VV2 - 4 ). (30)

For V< 0, (30) is defined for - oo < V -2, and u - 2{1 T /- (V+ 2)} as V-* -2 from
below. So we have

u(V; p) = {V 2 V V2- 4 )p- 1 + O(p-3 /2 ). (31)

With the - sign taken in (30), the solution as V - - oo matches with (27) as v -- 0- giving the
continuation of the lower branch, then (31) turns this lower branch (27) round at V= -2.

Expansion (31) becomes non-uniform on the upper branch (with the + sign now taken)
when V is of (p/2) i.e. when v is of 0(1). So to continue the upper branch we look for a
solution of (25) in the form

u(V; p) = Uo0 (V) () + (p + 

120
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giving at leading order

uo=-- + 1+4(v2 - v3)}, v<0,

121

(33)

where the positive sign is taken for the square root to make u0 > 0 when v < O0. Hence we have

u(v; p) = {-1 + 1 +4( 2 - v3 ) + O(p-1). (34)

Expansion (34) matches with the upper branch of (30) as v - 0-, V - - oo respectively.
The three expansions (27), (31) and (34) provide a uniform approximation to the vertical

isocline in v < 0, u > O0. The isoclines can now be sketched, as shown in Fig. 2(a). From this
figure we can infer immediately that, sufficiently close to u = v = 0, dv/du < 0, with, from (22),
that dv/dt < 0, du/dt > 0. Also, we have that on u = 0, dv/du - v, v - 0-. We are now in a

0

-2p'/
2

V 2/P U

dv<o
du

>0du

(b)

dv< 0
du

(a)

(c)

x

Fig. 2. The phase plane at infinity: (a) the isoclines in the (u, v) plane; the vertical isocline is shown by a continuous
line, the horizontal isocline by a broken line, (b) the trajectories near u = 0, v = O in the (u, v) plane, (c) the phase

portrait in the (x, y) plane.

y

- , b~~~~~~~~~~~~~~~~~~

dw
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position to give a qualitative sketch of the phase paths in the (u, v) plane close to u = v = 0.
These are shown in Fig. 2(b). The important point to note is that all paths enter the region
u > 0, v 0 with increasing t and no paths starting in u 0, v 0 (except u v 0) can
approach u = v = 0, i.e. the equilibrium point u = v = 0 is unstable.

To complete the phase portrait at infinity it remains to examine the behaviour in the
neighbourhood of the y-axis as y - oo. This is done through a transformation similar to (21).
As expected, since the term x/p will be negligible for y >> 1, x << 1, the details of the phase
portrait at the positive 'end' of the y-axis are qualitatively the same as those given by Merkin et
al. [7] when the uncatalysed step is absent. Thus we find that there is an equilibrium point at
the 'end' of the y-axis which is a saddle-point. The stable separatrix of which forms the
extension of the bounding path at infinity, while the unstable separatrix enters x, y > 0. The
complete phase portrait at infinity can now be sketched and is shown in the (x, y) plane in
Fig. 2c.

The examination of the phase portrait at infinity has shown the existence of a bounding path
connecting two unstable equilibrium points. So no paths starting in x, y > 0 can be attracted to
infinity and we can conclude that all such paths must remain bounded for t > 0.

With this result, a straightforward application of the Poincar6-Bendixson theorem (Jordan
and Smith [13]) shows that there will be at least one stable limit cycle in x, y > 0 (which must
surround (x5 , y,) whenever (x5, y) is unstable. In fact there must be an odd number of limit
cycles, with the innermost and outermost ones both being stable. Therefore, at each A in
1 < </Y 2, equations (5) have at least one stable limit cycle. Numerical integrations of
equations (5), as described in the next section, were performed for a wide range of initial values
(and values of A and p) and these indicate that there is just one such limit cycle in Al < < 2
and no limit cycles outside this range. (We can show by direct integration that there are no
oscillatory solutions at At = 0).

Finally it is of interest to note that bounds may be put on Xm,, for these limit cycles. A
sketch of the horizontal and vertical isoclines of equations (5) is given in Fig. 3 from which it is
clear that

X < Xmax < p- (35)

y

UP l,,.

o 4'2 p' HP X

Fig. 3. A sketch of the isoclines of equations (5); the vertical isocline is shown by a continuous line, the horizontal
isocline by a broken line.
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5. Numerical results

Equations (5) were solved numerically using a Runge-Kutta method for several values of p and
a range of in the interval /, < /l <P 2. The numerical solution started close to (x5, Y),
integrating forwards in t with a step length At typically At = 0.05 until the solution settled
onto a limit cycle (which was deemed to have been achieved when the solution had repeated
itself over more than 30 cycles). A graph of AX (defined by Ax = Xmax - xn) against for
p = 20 is shown in Fig. 4. The graph of Ay (defined by AX = ymx - Yin) is similar to this and is
not shown. There is a smooth curve rising from zero at = p, to a maximum value of
approximately 2.96 before decreasing to zero against at p = #J2. This is typical of the behaviour
of limit-cycle amplitudes for moderate values of p. For increased p the picture changes, a graph
of A x against for p = 200 is shown in Figure 5(a). Here we can see that close to /t2 the
behaviour is similar to that given by Merkin et al. [7]. However, around pA = Pjc (- 0.90032),
where without the uncatalysed step the amplitude becomes unbounded, A grows rapidly,
reaching a maximum of approximately 10.22. As p is decreased further, this value slowly
decreases until close to Ip it drops rapidly to zero. To the accuracy of the plotting in Fig. 5(a) it
appears to decrease discontinuously to zero, and to see this behaviour more clearly the values of
Ax close to L = p1 were also calculated, starting at p,1 + A, where Ap = (2 - tpl)/ 1 2 500 =
7.368 x 10- 5 and increasing p in steps of Ap. These are shown in Fig. 5(b) (The detail around
where there is a rapid increase in Ax was examined in finer detail using an even smaller value
of Ali). Here we can see that very close to pe the solution has the form as given from the Hopf
bifurcation theorem by (19), but this is followed by a very rapid rise to the values as shown in
Fig. 5(a). A graph of Ay against p for p = 200 is shown in Fig. 5(c). Here again we can see the
rapid rise in Ay around A = Pc, reaching a maximum value of approximately 7.09, but here Ay
decreases smoothly to zero at p = p~.

The period t of the limit cycles for i < p < p2 and p = 200 is plotted in Fig. 5(d) the values
of t close to 2 are consistent with (18), there is a fairly rapid rise in t around Ia = c
followed by an increase in t over the rest of the range. The values close to p1 = P1 appear to be
at odds with (18) (this gives a value t = 62.8 at itL). Values very close to PlI are shown in the
inset of this figure where we can again see (as in Figs. 5(a) and 5(b)) the rapid change from the
value as given by the Hopf bifurcation. The very rapid rise in AX around to A = Pc can be seen
even more clearly in Fig. 6, where A. is plotted against p for p = 2000.

Ax

Fig. 4. A graph of the amplitude A against for p = 20, , = 0.2504, p2 = 0.9150.
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It is interesting to note that, for a given value of IL, the mean value of y over a period is the
same for all p. On adding equations (5) we get d (/dt = - y, where = x + y, then integrating
this over a period t gives

1 f Py dt = = Ys
tp 

Further quantitative information about the solution near p = 8 than was given by Golubitsky
and Langford [12] can be obtained by expanding about p = 8 and using the method of multiple
scales. To do this we first put

5=x+y=A+ P +X, y=l+ Y,
A~ + 1/p

then with p = 8 + 8, 8 << 1, we expand ji, X, and Y in the form

= [to 
+

81/2Vl + 8V2 + ' '' ,

(36)

(37)X=8/
2

X, + SX 2 + 8
3

/
2
X3 - + .. ,

Y= l
1
/2Y + Y2 + 83/23 + . . .

'P

7-

A,

(a)

Uc 2
'U

(b)

5

3

0o
#l

Fig. 5. The behaviour for p = 200, A = 0.0714, 2 = 0.9924: (a) the amplitude A plotted against , (b) the amplitude
Ax close to pi, A = 7.368 x 10

- 5
, (c) the amplitude A, plotted against pj, (d) the period t plotted against Ja.
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(c)

Ml #C #2

tp

(d)

Pt

where ,o = 3-/8 is the value of , 1 and ,/2 at p = 8. The expansion in powers of 81/2 is
suggested by the forms of ,L and A/2 near p = 8. When (36) and (37) are substituted into
equations (5) and the resulting hierarchy of equations solved we find that secular terms arise at
0(83/2). These are removed by introducing the slow time = 8t, and so we have at 0(81/2):

X -VA(T) sin{J +(T)}J Y1 =A(T) cos(f +±4()) (38)

P1 Uc P2

Fig. 6. A graph of the amplitude Ax plotted against p for p = 2000, l = 0.0224, p2 = 0.9992.

/1

Fig. 5 (continued).
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0 200 400 600

p
Fig. 7. A graph of the amplitude Ax against p for 1 = L = 3T.

To remove the secular terms at 0(83/2), we find after some algebra that the amplitude A(T)
must satisfy the equation

dA 1-48 12 A2 (39)

For v > 1/48, equation (39) has only the one stationary state A = 0 and it is easy to show that
this is stable. For v2 < 1/48, equation (39) has two possible stationary states, namely A = 0 and
A = Ae = {(1 - 48v2)/12)1/2. Again it is straightforward to show A = 0 is unstable and that
A =Ae is stable, so that a stable limit cycle exists only for -1/v4 < vl < 1/4.

Finally we have from the above solution that Ax and Ay are both of O((p - 8)1/2) close to
p = 8, and in particular with = to = /-/8 we find that

Ax = ( p - 8 )
1/ 2 + y A= I (p-8)1 / 2 + - (40)

for (p - 8) << 1. Values of Ax for p > 8 have been calculated numerically keeping /, fixed at [to.
A graph of Ax against p is shown in Fig. 7, where the singular behaviour, given by (40), near
p = 8 can clearly be seen.

6. Discussion

The numerical results show that for p > 1 and close to /t1 and '2 the amplitudes of the limit
cycles are as given by Hopf bifurcation theorem, (19) and (20). Near = p2, where a bounded
solution exists for tck < ,u even without the addition of the uncatalysed reaction, the limit cycle
behaviour follows closely that given by Merkin et al. [7], so that the effect of the extra step is
unimportant. However, for < /, the addition of the uncatalysed reaction (even though this is
very slow compared to the autocatalytic step) is vital in keeping the solution bounded and
preserving the validity of the pooled chemical approximation.

Near 1 = ,, the amplitudes A and A are, for p >> 1, as given by (19), though this
behaviour is confined to a narrow range very close to /l, and these expressions are of little use
in estimating the amplitudes for A away from /1j . To see why this is the case we note that (35)
suggests that A, is at least of O(pl/ 2 ) for p > 1, whereas the solution close to / 1 gives A as
O(p1

/
4 ), from (19), so there must be a rapid change from this lower value to the higher one
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close to /,I. For t such that </ A, and > 2 the stationary state (x s , y) as given by (6) is
stable and the solution approaches this state from all (positive) initial conditions as t - oo.

In terms of the chemical reaction scheme (1-4), we can see that without step (4) there is a
parameter range where it is possible for B to decay more quickly to C via step (3) than can be
produced from A via step (2). With the supply of B completely exhausted, all that is left is step
(1) which just produces A from P. The inclusion of the uncatalysed reaction (4) stops this
happening, B is always being produced from A via this step, and even though the concentration
of B can get very small it can never be totally used up. This then enables the much faster
autocatalytic step (2) to keep producing B from A, slowly at first when the concentration of B
is low, but as the concentration of B builds up this rate of production increases rapidly until
virtually all A has been used up. Reaction (2) then slows down again, allowing A to build up
via (1) with B decreasing via step (3) and the whole process can then be repeated.
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